Exercise 71

(a) The van der Waals equation for n moles of a gas is

$$
\left(P+\frac{n^{2} a}{V^{2}}\right)(V-n b)=n R T
$$

where P is the pressure, V is the volume, and T is the temperature of the gas. The constant R is the universal gas constant and a and b are positive constants that are characteristic of a particular gas. If T remains constant, use implicit differentiation to find $d V / d P$.
(b) Find the rate of change of volume with respect to pressure of 1 mole of carbon dioxide at a volume of $V=10 \mathrm{~L}$ and a pressure of $P=2.5 \mathrm{~atm}$. Use $a=3.592 \mathrm{~L}^{2}-\mathrm{atm} / \mathrm{mole}^{2}$ and $b=0.04267 \mathrm{~L} / \mathrm{mole}$.

Solution

Part (a)

Expand the left side.

$$
P V-n b P+\frac{n^{2} a}{V}-\frac{n^{3} a b}{V^{2}}=n R T
$$

Differentiate both sides with respect to P, noting that T is a constant.

$$
\frac{d}{d P}\left(P V-n b P+\frac{n^{2} a}{V}-\frac{n^{3} a b}{V^{2}}\right)=\frac{d}{d P}(n R T)
$$

Use the chain rule to differentiate $V=V(P)$.

$$
\begin{gathered}
\frac{d}{d P}(P V)-\frac{d}{d P}(n b P)+\frac{d}{d P}\left(\frac{n^{2} a}{V}\right)-\frac{d}{d P}\left(\frac{n^{3} a b}{V^{2}}\right)=0 \\
{\left[\frac{d}{d P}(P)\right] V+P\left[\frac{d}{d P}(V)\right]-n b+\left(-\frac{n^{2} a}{V^{2}}\right) \frac{d V}{d P}-\left(-2 \frac{n^{3} a b}{V^{3}}\right) \frac{d V}{d P}=0} \\
(1) V+P\left(\frac{d V}{d P}\right)-n b-\frac{n^{2} a}{V^{2}}\left(\frac{d V}{d P}\right)+\frac{2 n^{3} a b}{V^{3}}\left(\frac{d V}{d P}\right)=0
\end{gathered}
$$

Solve for $d V / d P$.

$$
\begin{gathered}
V-n b+\left(P-\frac{n^{2} a}{V^{2}}+\frac{2 n^{3} a b}{V^{3}}\right) \frac{d V}{d P}=0 \\
\left(P-\frac{n^{2} a}{V^{2}}+\frac{2 n^{3} a b}{V^{3}}\right) \frac{d V}{d P}=n b-V
\end{gathered}
$$

Multiply both sides by V^{3}.

$$
\left(P V^{3}-n^{2} a V+2 n^{3} a b\right) \frac{d V}{d P}=V^{3}(n b-V)
$$

Therefore, dividing both sides by $P V^{3}-n^{2} a V+2 n^{3} a b$,

$$
\frac{d V}{d P}=\frac{V^{3}(n b-V)}{P V^{3}-n^{2} a V+2 n^{3} a b} .
$$

Part (b)
If $n=1 \mathrm{~mol}, V=10 \mathrm{~L}, P=2.5 \mathrm{~atm}, a=3.592 \mathrm{~L}^{2}-\mathrm{atm} / \mathrm{mol}^{2}$ and $b=0.04267 \mathrm{~L} / \mathrm{mol}$, then

$$
\begin{aligned}
\frac{d V}{d P} & =\frac{(10 \mathrm{~L})^{3}\left[(1 \mathrm{~mol})\left(0.04267 \frac{\mathrm{~L}}{\mathrm{~mol}}\right)-10 \mathrm{~L}\right]}{(2.5 \mathrm{~atm})(10 \mathrm{~L})^{3}-(1 \mathrm{~mole})^{2}\left(3.592 \frac{\mathrm{~L}^{2} \cdot \mathrm{~atm}}{\mathrm{~mol}^{2}}\right)(10 \mathrm{~L})+2(1 \mathrm{~mol})^{3}\left(3.592 \frac{\mathrm{~L}^{2} \cdot \mathrm{~atm}}{\mathrm{~mol}^{2}}\right)\left(0.04267 \frac{\mathrm{~L}}{\mathrm{~mol}}\right)} \\
& =\frac{10^{3}(0.04267-10) \mathrm{L}^{4}}{\left[2.5(10)^{3}-3.592(10)+2(3.592)(0.04267)\right] \mathrm{L}^{3} \cdot \mathrm{~atm}} \\
& \approx-4.04 \frac{\mathrm{~L}}{\mathrm{~atm}}
\end{aligned}
$$

